- Home
- About Us +
- About Us
- Award and Accolade
- New Award
- Nobel Prize
- TWAS Prize
- SS Bhatnagar Prize
- B M Birla Science Prize
- Fellow of the Royal Society
- Fellow of the TWAS
- Fellow of the INSA (FNA)
- Fellow Academy of Sciences (FASc)
- Fellow National Academy of Sciences (FNASc)
- CSIR Medal
- INSA Medal
- CRSI Medal
- MRSI Medal
- INSA Award/Honour/Fellowship
- DST Award/Honour/Fellowship
- CSIR Award/Honour/Fellowship
- History
- Introduction
- Organisational Hierarchy
- Audio Visual Gallery
- Annual Report
- Contact Us
- Archive
- Schools +
- Resource +
- Library
- Centre for Computer Research, Education and Services
- Indian Journal of Physics
- CREW
- CSS
- Seminar Hall
- Guest House
- Creche
- Digital Repository
- Oracle-ERP and UMS User's Manual
- Administrative Form
- Joining Kit
- Medical Cell
- Regulation and Forms for Ph.D
- Regulations for BS-MS
- Regulations for MS and Integrated MS-PhD
- Intranet
- Academics +
- Administration +
- People +
- Outreach +
- Activity Center +
- Research +

Group,2023
Organic synthesis provides access to molecules of interest in the field of medicine, materials, and catalysis. We pursue interdisciplinary research combining organic chemistry with biology to develop new paradigms in medicinal chemistry.
Organic Synthesis
We develop new methodologies for the synthesis of diverse molecules that may be utilized as lead molecules for understanding structure and function of therapeutic targets in cellular system. Specific areas of interest include transition-metal catalyzed and meta-free processes, organocatalysis and development of new reactions in aqueous media. We also focus on chemical approaches that can find applications in drug delivery and biomolecular devices.
Selected publications:
1) T. Mandal, G. Chakraborti, S. Maiti, J. Dash, Org. Lett. 2019, 21, 19, 8044-8048.
2) S Karmakar, T Mandal, J. Dash, Eur. J. Org. Chem. 2019, 5916-5924.
3) T Ghosh, S Jana, J. Dash, Org. Lett., 2019, 21, 6690-6694.
4) G. Chakraborti, S. Paladhi, T. Mandal, J. Dash, J. Org. Chem. 2018, 83, 7347-7359. highlighted in Organic Chemistry Portal; https://www.organic-chemistry.org/abstracts/lit6/393.shtm).
5) T. Mandal, G. Chakraborti, S. Karmakar, J. Dash, Org. Lett. 2018, 20, 4759−4763.
6) S. Maiti, L. Burgula, G. Chakraborti, J. Dash, Eur. J. Org. Chem. 2017, 332-340.
7) K. Dhara, T. Mandal. J. Das, J. Dash Angew. Chem. Int. Ed. 2015, 54, 15831-15835.
8) G. C. Midya, A. Kapat, S. Maiti, J. Dash, J. Org. Chem. 2015, 80, 4148–4151. Highlighted in Organic Chemistry Portal, http://www.organic-chemistry.org/abstracts/lit4/898.shtm
9) S. Paladhi,J. Das, M. Samanta, J. Dash, Adv. Synth. & Catal. 2014, 356, 3370-3376.
Targeting Non-canonical Nucleic Acids
Nucleic acids play important roles in living systems such as storage of genetic information, replication, transcription, and translation. DNA can adopt a variety of secondary structures including G-quadruplex, i-motif, triplex, hairpin etc. Secondary structures formed from RNA (miRNA, HIV-TAR RNA, etc.) are equally important in regulating the expression of proteins, which mediate important biological functions. Therefore, these secondary structures have largely evolved as important drug targets in nucleic acid targeted therapeutics. We synthesize a variety of small molecules: natural products and their analogues, peptidomimetics and nucleosides for the selective recognition of secondary nucleic acid structures over double helical DNA. We employ rational design, target-assisted combinatorial chemistry, biophysical chemistry and molecular biology to develop and evaluate new chemical scaffolds that can regulate the structure and function of nucleic acids (DNA and RNA).
1) M. Debnath, K. Fatma, J. Dash, Angew. Chem. Int. Ed. 2019, 57, 2942-2957.
2) P. Saha, D. Panda, J. Dash, Chem. Commun. 2019, 55, 731-750.
3) D. Panda, P. Saha, R. Chaudhuri, P., Thumpati, Y. Ravichandiran, J. Dash, Anal. Chem. 2019, 18, 7705-7711.
4) S. Jana, D. Panda, P. Saha, D. Pantos, J. Dash, J. Med. Chem. 2019, 62, 762-773.
5) D. Dutta, M. Debnath, D. Müller, R. Paul, T. Das, I. Bessi, H. Schwalbe, J. Dash ,Nucleic Acids Res. 2018, 46, 5355-5365.
6) M. Debnath, R. Paul, D. Panda, J. Dash, ACS Synth. Biol.2018, 7, 1456-1464.
7) S. Maiti, P. Saha, T. Das, I. Bessi,H. Schwalbe, J. Dash, Bioconjugate Chem. 2018, 29, 1141-1154.
8) M. Debnath, S. Ghosh, A. Chauhan, R. Paul, K. Bhattacharyya, J. Dash, Chem. Sc. 2017, 8, 7448-7456.
9) D. Panda, P. Saha, T. Das, J. Dash, Nature communications, 2017, 8, 16103.
10) M. Debnath, S. Ghosh, D. Panda, I. Bessi, H. Schwalbe, K. Bhattacharyya, J. Dash, Chem. Sci. 2016, 7, 3279-3285.
Supramolecular Chemistry of Nucleic Acids
The nucleic acids DNA and RNA are the most interesting bio-polymers, in which the five naturally occurring nucleobases adenine, cytosine, guanine, thymine and uracil are involved in H-bonding interactions. The double-stranded DNA/RNA structures are mainly based on the complementary Watson–Crick H-bonding pairings of guanine with cytosine, and adenine with thymine (or uracil), while the G-rich DNA/RNA strands fold to form G-quadruplex structures that contain Hoogsteen H-bonding assembly of four guanines. Our current research is focused on supramolecular chemistry of nucleic acids and their components to generate bio-inspired nano-structures, hydrogels and transmembrane ion channels.
Selected publications:
1) M. Debnath, S. Chakraborty, Y. P. Kumar, R. Chaudhuri, B. Jana, J. Dash, Nature communications, 2020, (accepted).
2) T Bhattacharyya, R Chaudhuri, KS Das, R Mondal, S Mandal, J. Dash, ACS Appl. Bio Mat., 2019, 2, 3171-3177.
3) T. Bhattacharyya, P. Saha, J. Dash, ACS Omega, 2018, 3, 2230–2241.
4) R. N. Das,Y. P. Kumar, S. A. Kumar,O. M. Schütte,C. Steinem, J. Dash, Chem. Eur. J. 2018, 24, 4002-4005.
5) T. Bhattacharyya, Y. P. Kumar, J. Dash, ACS Biomat. Sci. & Eng. 2017, 3, 2358-2365.
6) A. Ghosh, B. Parasar, T. Bhattacharyya, J. Dash, Chem. Commun. 2016, 52, 11159-11162.
7) Y. P. Kumar, R. Nath Das, O. M. Schütte, C. Steinem, J. Dash, Nat. Protoc. 2016, 11, 1039-1056
8) R. N. Das, Y. P. Kumar, O. M. Schütte, C. Steinem, J. Dash, J. Am. Chem. Soc. 2015, 137, 34–37.

Jyotirmayee Dash