Indian Association for the Cultivation of Science

Name : Raja Paul

Department : School of Mathematical & Computational Sciences
Designation : Professor (Concurrently Affiliated to SAIS)
Contact : + 913324734971 (Ext 1310)
Email : ssprp@iacs.res.in


Home

Apparently diverse,  soft-matter biology and statistical mechanics meet on a common platform in our computational lab.


BiophysicsOur primary focus is to develop mathematical and computational models to make quantitative predictions of various intra- and inter-cellular processes including , mitosis, assembly of cellular organelles and cell-cell interaction.

Statistical mechanics: We carry out numerical studies to understand  coarsening and aging dynamics in disordered magnetic and activity driven systems.



Academic Profile

Academic Profile

Postdoc: 2007 – 2009, Cell mechanics, motility and division, University of California, Davis, U.S.A.

Postdoc: 2005 – 2007, Soft matter and Biophysics, Cell adhesion, Tissue mechanics, University of Heidelberg, Heidelberg, Germany.

PhD: Statistical mechanics, University of Saarland, Saarbruecken, Germany (September 2005)

M.Sc.: Physics, Jawaharlal Nehru University, New Delhi, India, (1998-2000)


Group


Dr. Subhendu Som

Ph.D. Physics
Research:
Computational Biophysics, Study of active mechanics and
stochasticity in cellular media
sspss5@iacs.res.in
Apurba Sarkar


M.Sc. Physics
Research:
Computational Biophysics, Statistical Mechanics
apurbaphysics391@gmail.com
Mintu Karmakar

M.Sc. Physics
Research:
Statistics Mechanics Of active matter system
mkarmakar094@gmail.com
Pinaki Nayak

M.Sc. Physics
Research:
Computational biophysics
pnpinaki@gmail.com


 
Aditya Dutta

M.Sc. Physics
Research:
Statistical mechanics of active matter system
adityadutt2x@gmail.com
Arnab Das

B.Sc. Physics (Project)
B.Sc.
Statistical mechanics of active matter system
arnabdas2199@gmail.com
Sayam Bandyopadhyay

B.Sc. Physics (Project)
B.Sc.
Statistics mechanics of active matter system
bandyosayam@gmail.com
Saptarshi Chatterjee

M.Sc. Physics
Research:
Computational Biophysics, Role of actomyosin dynamics in the rheology of active, transient cytoskeletal networks in the cell.
sspsc6@iacs.res.in
 
Dr. Swarnajit Chatterjee (former member)

Ph.D Physics
Research:
Statistical Mechanics,Coarsening & aging in statistical systems with vector order parameter.,Active matter
sspsc5@iacs.res.in
Dr. Saikat Basu (former member)

Ph.D. Physics
Research:
Research: Computational Biophysics, Statistical Mechanics. Mechanical Properties of Cell-ECM composite system. Aging & coarsening in binary fluid mixture
Currently at:Julicher Lab.MPI-PKS. Dresden. Germany
saikatjuphy0809@gmail.com
Dr. Sabyasachi Sutradhar (former member)

Ph.D. Physics
Research:
Research: Computational Biophysics, Statistical Mechanics Computational modeling of cell division and mechanics
Currently at: Howard Lab, Yale University, USA
s.s.sutradhar@gmail.com

 



Publication

Publications

 

A force-balance model for centrosome positioning and spindle elongation during interphase and anaphase B, A Mallick, A Sarkar, R Paul, Indian J Phys (2022), https://doi.org/10.1007/s12648-022-02309-z

 

 

Mechanics of microtubule organizing center clustering and spindle positioning in budding yeast Cryptococcus neoformans, S Chatterjee, S Som, N Varshney, K Sanyal, and R Paul, Phys. Rev. E 104, 034402 (2021)

 

Flocking with a q-fold discrete symmetry: band-to-lane transition in the active Potts model, M Mangeat, S Chatterjee, R Paul, H Rieger, Phys. Rev. E 102, 042601 (2020)

 

SEIRD model to study the asymptomatic growth during COVID-19 pandemic in India, Saptarshi Chatterjee Saptarshi Chatterjee, A Sarkar, M Karmakar, S Chatterjee, and R Paul, Indian J Phys (2020) https://doi.org/10.1007/s12648-020-01928-8

(Media coverage: Times of India, May 4, 2020)

 

Mechanics of Multicentrosomal Clustering in Bipolar Mitotic Spindles,  S Chatterjee, A Sarkar, J Zhu, A Khodjakov, A Mogilnerand R Paul, Biophys. J., 119 (2), 434-447, (2020)

 

Flocking and reorientation transition in the 4-state active Potts model, S Chatterjee, M Mangeat, R Paul, and H RiegerEPL, 130, 66001 (2020)

 

Studying the progress of COVID-19 outbreak in India using SIRD model, S Chatterjee, A Sarkar, S Chatterjee, M Karmakar, and R Paul, Indian J Phys (2020). https://doi.org/10.1007/s12648-020-01766-8

(Media coverage: Times of India, May 4, 2020)

 

Ordering kinetics in a q-state random-bond clock model: Role of vortices and interfaces, S Chatterjee, S Sutradhar, S Puri, and R Paul, Phys. Rev. E 101, 032128 (2020)

 

A novel combinatorial approach of quantitative microscopy and in silico modeling deciphers Arf1-dependent Golgi size regulation, P Iyer, S SutradharR Paul, and D BhattacharyyaEur. Phys. J. E, 42, 154 (2019)

 

Search and capture efficiency of dynamic microtubules for centrosome relocation during IS formation, A. Sarkar, H. Rieger and R. Paul, Biophys. J., 116 (11), 2079-2091 (2019)

( New and Notable: Laying Tracks for Poison Delivery to “Kiss of Death”: Search for Immune Synapse by Microtubules, DebashishChowdhury, Biophys. J. https://doi.org/10.1016/j.bpj.2019.05.001 )

 

Spatio-temporal regulation of nuclear division by Aurora B kinase Ipl1 in Cryptococcus neoformans, N Varshney, S Som, S Chatterjee, S Sridhar, D Bhattacharyya, R Paul and K Sanyal, PLoS Genetics, 15(2):e1007959 (2019)

 

Mechanistic three-dimensional model to study centrosome positioning in the interphase cell, S. Som, S. Chatterjee, and R. Paul,  Phys Rev E 99, 012409 (2019)

 

Ordering kinetics in q-state clock model: scaling properties and growth laws, S. Chatterjee, S. Puri and R. Paul, Phys. Rev. E. 98, 032109 (2018)

 

Substrate stiffness and mechanical stress due to intercellular cooperativity guides tissue structure, S.Basu, S.Sutradhar, R.Paul, J. Theo. Biol. 457, 124-136 (2018)

 

Ordering kinetics in the random-bond X Y model, M. Kumar, S. Chatterjee, R. Paul and S. Puri, Phys Rev E 96, 042127 (2017)

 

EB1 regulates attachment of Ska1 with microtubules by forming extended structures on the microtubule lattice, G E Thomas, K Bandopadhyay, S Sutradhar, M R Renjith, P Singh, K K Gireesh, S Simon, B Badarudeen, H Gupta, M Banerjee, R Paul, J Mitra, T K Manna, Nature communications, 7, 11665 (2016)

 

Phase segregation in a binary fluid confined inside a nanopore, S. Basu, S. Majumder, S. Sutradhar, S. K. Das, R. Paul, EPL (Europhysics Letters) 116 (5), 56003 (2016)

 

Adaptive changes in the kinetochore architecture facilitate proper spindle assembly, V. Magidson#, R. Paul#, N. Yang, J. G. Ault, C. B. O’Connell, I. Tikhonenko, B. F. McEwen, A. Mogilner, A. Khodjakov, Nat. Cell Biol. 17, 1134 (2015), #contributed equally

 

A comprehensive model to predict mitotic division in budding yeasts, S. Sutradhar, V.Yadav, S. Sridhar, D. Bhattacharyya, S. K. Ghosh, K. Sanyal and R. Paul, Mol. Biol. Cell, 26, 3954-3965, (2015). (Cover Page Article)

 

Inter-centrosomal angular separation during mitosis plays a crucial role for maintaining spindle stability, S. Sutradhar, S. Basu and R. Paul, Phys. Rev. E 92, 042714 (2015).

 

Budding Yeast Kinetochore Proteins, Chl4 and Ctf19, Are Required to Maintain SPB-Centromere Proximity during G1 and Late Anaphase, S. Sau, S. Sutradhar, R. Paul, P. Sinha, PLoS One, 9(7), e101294 (2014)

 

Tug-of-war between opposing molecular motors explains chromosomal oscillation during mitosis, S. Sutradhar, R. Paul, J. Theo. Biol, 344, 56-69 (2014)

 

Concerted effort of centrosomal and Golgi-derived microtubules is required for proper Golgi complex assembly but not maintenance, T Vinogradova, R Paul, A D Grimaldi, J Loncarek, P M Miller, D Yampolsky, V Magidson, A Khodjakov, A Mogilner, I Kaverina, Mol. Biol. Cell, 23: 820-833 (2012).

 

Timing of centrosome separation is important for accurate chromosome segregation, William T. Silkworth, Isaac K. Nardi, R. Paul, Alex Mogilner, Daniela Cimini, Mol. Biol. Cell, 23: 401-411 (2012).

 

Spatial arrangement of chromosomes during prometaphase accelerates spindle assembly, Valentin Magidson, Christopher B. O'Connell, R. Paul, Jadranka Loncarek, Alex Mogilner and Alexey Khodjakov, Cell, 146: 555-567 (2011).

 

Modeling Biological Cells, R. Paul, Chem. Modell., 9, 61-91 (2012)

 

Computer simulations predict that chromosome movements and rotations accelerate mitotic spindle assembly without compromising accuracy, R. Paul, R. Wollman, W. T. Silkworth, I. K. Nardi, D. Cimini, A. Mogilner, PNAS, 106: 15708-1513 (2009)

 
N. P. Ferenz, R. Paul, C. Fagerstrom, A. Mogilner, P. Wadsworth, Eg5/Dynein antagonism during bipolar spindle assembly formation requires overlapping centrosomal microtubules, Current Biol., 19 : 1833-1838 (2009)
 
R. Paul, Flow-correlated dilution of a regular network leads to a percolating network during tumor induced angiogenesis, Eur. Phys. J. E 30, 101-114 (2009)
 
R. Paul and U.S. Schwarz. Pattern formation and force generation by cell ensembles in a filamentous matrix. Proceedings of the IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, in press, Springer (2009).
 
R. Paul, P. Heil, U. Schwarz and J. Spatz, Propagation of mechanical stress through the actin cytoskeleton towards focal adhesions: model and experiment, Biophys. J. , 94:1470-1482, (2008).
 
R. Paul, J.-D. Noh, G. Schehr, H. Rieger, Computer simulations of phase transitions and dynamics in confined systems, Z. Phys. Chem., 222, 433 (2008).
 
R. Paul, A. Gambassi and G. Schehr, Dynamic crossover in the global persistence at criticality, Europhys. Lett. 78, 10007 (2007).
 
R. Paul, G. Schehr and H. Rieger, Super-Aging in two-dimensional random ferromagnets, Phys. Rev. E 75, 030104(R) (2007).
 
G. Schehr and R. Paul, Non-equilibrium critical dynamics in disordered ferromagnets,J. Phys: Conf. Series 40 27-35 (2006).
 
R. Paul and G. Schehr, Non Markovian persistence in the diluted Ising model at criticality, Europhys. Lett. 72(5), 719 (2005).
 
R. Paul and H. Rieger, Condensation Phenomena in Nanopores - a Monte Carlo Study, J. Chem. Phys. 123, 024708 (2005).
 
R. Paul, S. Puri and H. Rieger, Domain Growth in Ising Systems with Quenched Disorder, Phys. Rev. E 71, 061109 (2005).
 
G. Schehr and R. Paul, Universal aging properties at a disordered critical point, Phys. Rev. E 72, 016105 (2005).
 
G. Schehr, R. Paul, H. Rieger, Growing length scales in 2d disordered systems, Prog. Theor. Phys. Suppl., 157, 111 (2005).
 
R. Paul, S. Puri and H. Rieger, Domain growth in random magnets, Europhys. Lett. 68(6), 881 (2004).
 
R. Paul, M. Alava and H. Rieger, Low temperature properties of the random field Potts chain, Eur. Phys. J. B 30, 357 (2002).

 


Teaching

For Integrated PhD coursework in Chemistry, IACS

  • Mathematics for Chemists (since 2012), Int. PhD in Chemistry, IACS
  • Elements of Chemical Biology & modeling (in 2011), Int. PhD in Chemistry, IACS
  • Statistical mechanics (in 2013-14), R. K. Mission College, Narendrapur, Kolkata
  • Physics in biology (in 2012), INSPIRE Internship program, Saurashtra University, Rajkot


Honors/Awards