Apparently diverse, soft-matter biology and statistical mechanics meet on a common platform in our computational lab.
Biophysics: Our primary focus is to develop mathematical and computational models to make quantitative predictions of various intra- and inter-cellular processes including , mitosis, assembly of cellular organelles and cell-cell interaction.
Statistical mechanics: We carry out numerical studies to understand coarsening and aging dynamics in disordered magnetic and activity driven systems.
Postdoc: 2007 – 2009, Cell mechanics, motility and division, University of California, Davis, U.S.A.
Postdoc: 2005 – 2007, Soft matter and Biophysics, Cell adhesion, Tissue mechanics, University of Heidelberg, Heidelberg, Germany.
PhD: Statistical mechanics, University of Saarland, Saarbruecken, Germany (September 2005)
M.Sc.: Physics, Jawaharlal Nehru University, New Delhi, India, (1998-2000)
Publications
A force-balance model for centrosome positioning and spindle elongation during interphase and anaphase B, A Mallick, A Sarkar, R Paul, Indian J Phys (2022), https://doi.org/10.1007/s12648-022-02309-z
|
|
Mechanics of microtubule organizing center clustering and spindle positioning in budding yeast Cryptococcus neoformans, S Chatterjee, S Som, N Varshney, K Sanyal, and R Paul, Phys. Rev. E 104, 034402 (2021) |
|
Flocking with a |
|
SEIRD model to study the asymptomatic growth during COVID-19 pandemic in India, Saptarshi Chatterjee Saptarshi Chatterjee, A Sarkar, M Karmakar, S Chatterjee, and R Paul, Indian J Phys (2020) https://doi.org/10.1007/s12648-020-01928-8 (Media coverage: Times of India, May 4, 2020) |
|
Mechanics of Multicentrosomal Clustering in Bipolar Mitotic Spindles, S Chatterjee, A Sarkar, J Zhu, A Khodjakov, A Mogilner, and R Paul, Biophys. J., 119 (2), 434-447, (2020) |
|
Flocking and reorientation transition in the 4-state active Potts model, S Chatterjee, M Mangeat, R Paul, and H Rieger, EPL, 130, 66001 (2020) |
|
Studying the progress of COVID-19 outbreak in India using SIRD model, S Chatterjee, A Sarkar, S Chatterjee, M Karmakar, and R Paul, Indian J Phys (2020). https://doi.org/10.1007/s12648-020-01766-8 (Media coverage: Times of India, May 4, 2020) |
|
Ordering kinetics in a q-state random-bond clock model: Role of vortices and interfaces, S Chatterjee, S Sutradhar, S Puri, and R Paul, Phys. Rev. E 101, 032128 (2020) |
|
A novel combinatorial approach of quantitative microscopy and in silico modeling deciphers Arf1-dependent Golgi size regulation, P Iyer, S Sutradhar, R Paul, and D Bhattacharyya, Eur. Phys. J. E, 42, 154 (2019) |
|
Search and capture efficiency of dynamic microtubules for centrosome relocation during IS formation, A. Sarkar, H. Rieger and R. Paul, Biophys. J., 116 (11), 2079-2091 (2019) ( New and Notable: Laying Tracks for Poison Delivery to “Kiss of Death”: Search for Immune Synapse by Microtubules, DebashishChowdhury, Biophys. J. https://doi.org/10.1016/j.bpj.2019.05.001 ) |
|
Spatio-temporal regulation of nuclear division by Aurora B kinase Ipl1 in Cryptococcus neoformans, N Varshney, S Som, S Chatterjee, S Sridhar, D Bhattacharyya, R Paul and K Sanyal, PLoS Genetics, 15(2):e1007959 (2019) |
|
Mechanistic three-dimensional model to study centrosome positioning in the interphase cell, S. Som, S. Chatterjee, and R. Paul, Phys Rev E 99, 012409 (2019) |
|
Ordering kinetics in q-state clock model: scaling properties and growth laws, S. Chatterjee, S. Puri and R. Paul, Phys. Rev. E. 98, 032109 (2018) |
|
Substrate stiffness and mechanical stress due to intercellular cooperativity guides tissue structure, S.Basu, S.Sutradhar, R.Paul, J. Theo. Biol. 457, 124-136 (2018) |
|
Ordering kinetics in the random-bond X Y model, M. Kumar, S. Chatterjee, R. Paul and S. Puri, Phys Rev E 96, 042127 (2017) |
|
EB1 regulates attachment of Ska1 with microtubules by forming extended structures on the microtubule lattice, G E Thomas, K Bandopadhyay, S Sutradhar, M R Renjith, P Singh, K K Gireesh, S Simon, B Badarudeen, H Gupta, M Banerjee, R Paul, J Mitra, T K Manna, Nature communications, 7, 11665 (2016) |
|
Phase segregation in a binary fluid confined inside a nanopore, S. Basu, S. Majumder, S. Sutradhar, S. K. Das, R. Paul, EPL (Europhysics Letters) 116 (5), 56003 (2016) |
|
Adaptive changes in the kinetochore architecture facilitate proper spindle assembly, V. Magidson#, R. Paul#, N. Yang, J. G. Ault, C. B. O’Connell, I. Tikhonenko, B. F. McEwen, A. Mogilner, A. Khodjakov, Nat. Cell Biol. 17, 1134 (2015), #contributed equally |
|
A comprehensive model to predict mitotic division in budding yeasts, S. Sutradhar, V.Yadav, S. Sridhar, D. Bhattacharyya, S. K. Ghosh, K. Sanyal and R. Paul, Mol. Biol. Cell, 26, 3954-3965, (2015). (Cover Page Article) |
|
Inter-centrosomal angular separation during mitosis plays a crucial role for maintaining spindle stability, S. Sutradhar, S. Basu and R. Paul, Phys. Rev. E 92, 042714 (2015). |
|
Budding Yeast Kinetochore Proteins, Chl4 and Ctf19, Are Required to Maintain SPB-Centromere Proximity during G1 and Late Anaphase, S. Sau, S. Sutradhar, R. Paul, P. Sinha, PLoS One, 9(7), e101294 (2014) |
|
Tug-of-war between opposing molecular motors explains chromosomal oscillation during mitosis, S. Sutradhar, R. Paul, J. Theo. Biol, 344, 56-69 (2014) |
|
Concerted effort of centrosomal and Golgi-derived microtubules is required for proper Golgi complex assembly but not maintenance, T Vinogradova, R Paul, A D Grimaldi, J Loncarek, P M Miller, D Yampolsky, V Magidson, A Khodjakov, A Mogilner, I Kaverina, Mol. Biol. Cell, 23: 820-833 (2012). |
|
Timing of centrosome separation is important for accurate chromosome segregation, William T. Silkworth, Isaac K. Nardi, R. Paul, Alex Mogilner, Daniela Cimini, Mol. Biol. Cell, 23: 401-411 (2012). |
|
Spatial arrangement of chromosomes during prometaphase accelerates spindle assembly, Valentin Magidson, Christopher B. O'Connell, R. Paul, Jadranka Loncarek, Alex Mogilner and Alexey Khodjakov, Cell, 146: 555-567 (2011). |
|
Modeling Biological Cells, R. Paul, Chem. Modell., 9, 61-91 (2012) |
|
Computer simulations predict that chromosome movements and rotations accelerate mitotic spindle assembly without compromising accuracy, R. Paul, R. Wollman, W. T. Silkworth, I. K. Nardi, D. Cimini, A. Mogilner, PNAS, 106: 15708-1513 (2009) |
|
N. P. Ferenz, R. Paul, C. Fagerstrom, A. Mogilner, P. Wadsworth, Eg5/Dynein antagonism during bipolar spindle assembly formation requires overlapping centrosomal microtubules, Current Biol., 19 : 1833-1838 (2009) | |
R. Paul, Flow-correlated dilution of a regular network leads to a percolating network during tumor induced angiogenesis, Eur. Phys. J. E 30, 101-114 (2009) | |
R. Paul and U.S. Schwarz. Pattern formation and force generation by cell ensembles in a filamentous matrix. Proceedings of the IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, in press, Springer (2009). | |
R. Paul, P. Heil, U. Schwarz and J. Spatz, Propagation of mechanical stress through the actin cytoskeleton towards focal adhesions: model and experiment, Biophys. J. , 94:1470-1482, (2008). | |
R. Paul, J.-D. Noh, G. Schehr, H. Rieger, Computer simulations of phase transitions and dynamics in confined systems, Z. Phys. Chem., 222, 433 (2008). | |
R. Paul, A. Gambassi and G. Schehr, Dynamic crossover in the global persistence at criticality, Europhys. Lett. 78, 10007 (2007). | |
R. Paul, G. Schehr and H. Rieger, Super-Aging in two-dimensional random ferromagnets, Phys. Rev. E 75, 030104(R) (2007). | |
G. Schehr and R. Paul, Non-equilibrium critical dynamics in disordered ferromagnets,J. Phys: Conf. Series 40 27-35 (2006). | |
R. Paul and G. Schehr, Non Markovian persistence in the diluted Ising model at criticality, Europhys. Lett. 72(5), 719 (2005). | |
R. Paul and H. Rieger, Condensation Phenomena in Nanopores - a Monte Carlo Study, J. Chem. Phys. 123, 024708 (2005). | |
R. Paul, S. Puri and H. Rieger, Domain Growth in Ising Systems with Quenched Disorder, Phys. Rev. E 71, 061109 (2005). | |
G. Schehr and R. Paul, Universal aging properties at a disordered critical point, Phys. Rev. E 72, 016105 (2005). | |
G. Schehr, R. Paul, H. Rieger, Growing length scales in 2d disordered systems, Prog. Theor. Phys. Suppl., 157, 111 (2005). | |
R. Paul, S. Puri and H. Rieger, Domain growth in random magnets, Europhys. Lett. 68(6), 881 (2004). | |
R. Paul, M. Alava and H. Rieger, Low temperature properties of the random field Potts chain, Eur. Phys. J. B 30, 357 (2002). |
For Integrated PhD coursework in Chemistry, IACS